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SUMMARY 

A linear partial differential equation is derived to describe growth of an axisymmetric perturbation in the 
plastic buckling of axially compressed cylindrical shells. Simple J2 flow theory is used along with rigid-plastic 
material behavior. An asymptotic solution is then constructed for large values of a parameter which charac- 
terizes localization of an initial imperfection. The perturbation remains localized. The solution is compared 
with experimental results. 

1. Introduction 

Plastic buckling of axially compressed cylindrical shells has received considerable attention. A 

fairly comprehensive survey of the literature on this problem, up to 1972, is included in a 
general survey of plastic buckling compiled by Sewell [1]. A more recent paper by Bruhns [2] 

contains additional references. Much of the analysis has been based on bifurcation criteria for 

determining critical buckling loads, with sinusoidal buckling modes being assumed. 
The method followed in the present investigation has its origin in the work of Goodier et. 

al. [3, 4] on dynamic plastic buckling which treats growth of a perturbation. In perturbation 
analysis based on the von Mises yield condition, the change in direction of the plastic strain-rate 
vector as the perturbation grows is the dominant effect, not work-hardening. Some experimen- 
tal confirmation of this result has been noted[3, 5]. Another aspect of plastic buckling of shells 
which can be treated readily by perturbation analysis, and which is the subject of the present 
investigation, is the localization of the buckling deformation, a feature of plastic buckling long 

recognized experimentally. For example, a figure in the well-known reference by Timoshenko 
and Gere [6] illustrates that buckles in an axially compressed cylindrical shell form and collapse 
consecutively and not simultaneously as implied by the common assumption of a sinusoidal 
buckling mode. 

In experiments on plastic buckling of axially compressed shells, constraint at the boundary 
usually governs initiation of buckling. A numerical analysis, based on a variational principle, of 
buckling of an axially compressed cylindrical shell with edge constraint has been given by 
Murphy and Lee [7]. More recently, the present author [8] has made an analytic study of 
localized plastic edge buckling in axially compressed steep truncated conical shells. A sufficient- 
ly large initial imperfection in an axially compressed cylindrical shell can initiate plastic buck- 
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ling away from the ends. The buckling deformation remains localized to the immediate neigh- 
borhood of the imperfection. 

The present paper gives an analysis of this problem that yields a prediction on the extent of 
the buckling deformation which is in reasonably close agreement with the results of some 
simple experiments. A moderately thick shell is considered, such that the critical stress for 
bifurcation in an initially perfect elastic-plastic cylindrical shell would be far above the yield 
stress. The uniform stress at the maximum load observed in tests is then a small fraction of the 
bifurcation stress, and linearized regular perturbation analysis based on rigid-plastic material 

behavior is appropriate, at least in the early stages of buckling when the deformation mode 
becomes established. Also in moderately thick cylindrical shells considered here, the buckling 
mode is axisymmetric, consisting of a single outward bulge, Fig. 1. 

2. Derivation of a llnearized differential equation to describe axisymmetric plastic buckling in 

an axially compressed infinite cylindrical shell 

Except for minor changes, the notation of Timoshenko and Gere [9] is followed. The coordi- 
nates are x, 0, z: the x axis lies along a meridian, while the z axis points in the radial direction, 

positive inward. The nominal radius of the middle surface is a, the shell thickness is denoted by 

h, and the radial displacement is w, positive in the direction of positive z. M x and Mo are the 
bending moments, and Nx and No are the membrane forces associated with the buckling 
deformation, that is, the total membrane force on the cut section x = constant is (-Ph + Nx) 

per unit length, where P is the uniform axial compressive stress. 
Constitutive relations for Mx, Mo, Nx, and N o in terms of w are now derived, based on the 

usual assumptions of simple shell theory, and on rigid-plastic material behavior. For axisymmet- 

ric deformation, a shell lamina is in a state of plane stress with ax, ao as principal stresses. The 
constitutive equation for the strain rates ex, e0 based on the von Mises yield condition and 

normality condition during 'loading' is [10], 

Fig. 1. Cross-section of a buckled specimen. 
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~J2/aOo 
(2.1) 

where 

( ~ J 2  
A=X ~ 

X = 3/(4HJ2 ), 

6x + ~ 6o > O, 

J2 = (O=x - %Oo + o0)/3, 

and H is the hardening modulus. Superposed dots denote differentiation with respect to time t. 
At least in the early stages, plastic buckling proceeds under increasing axial load and the 
perturbation remains small. Only the condition that J2 > 0 is considered. Equation (2.1)is 
linearized by putting 

Ox = - P  + Sx, Oo = So, (2.2) 
1 

ex = - ¢  + ex + Z~x,  eo = ~¢ + eo + Z~o. (2.3) 

In (2.3), e is the uniform compressive strain due to the uniform uniaxial compressive stressP; 
e x, e o are middle-surface strain perturbations associated with s x, s o ; and ~x, K0 are middle- 
surface curvature changes. Since (2.1) holds in the absence of the perturbation, 

Retention of just first order terms in Sx, So yields the relations, after integration over the shell 
thickness, 

I Zh4 " = - ~No ,  (2.4) 

3 / ~  1 "  1 "  
Hheo = ~ "-'ff No - i X x  + ~No.  (2.5) 

Retention of first order terms in Sx, So, multiplication by z, and integration over the shell 
thickness yield 

n h  3 
- " ~ M o ,  (2.6) 12 •x =/~/x 1 • 

Hh 3 • 3 
1 ' 1 " 

12 ~0 = ~" ~ Mo - $Mx  + -~Mo. (2.7) 

As long as the external load is monotonically increasing in time, the loading rate can be 
specified arbitrarily. Equations (2.5) and (2.7) can be simplified by taking P = Po et.  Then ~fi/P = 
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1. Po is not necessarily the initial yield stress of the material. Po can be the value of stress at 
any point along the stress-strain curve at or beyond the initial yield point. The growth of the 

perturbation is followed for an interval of time t starting at any arbitrary time in the loading 
history subsequent to the inception of plastic deformation. 

In view of (2.3), the stress rates fix, 6o are referred to axes that rotate with the principal 
strain axes. These stress rates are unaffected by superposed rigid body rotation. Therefore (2.1) 
is valid for finite strain, with ax, Oo referring to current area and ex, do being logarithmic strain 
rates. The coordinate x measures distance along a meridian at t = 0. Then, with w(x, t) a small 

radial displacement measured from the nominal radius a of the middle surface at t = 0, lin- 
earized expressions for the rates of strain and curvature change become, with primes indicating 
differentiation with respect to x, 

eo = - k / a ,  kx = -re", ko = -~' la 2 ~- O. (2.8) 

The curvature change x0 is neglected compared to K x, as in the elastic analysis [9]. It follows 
from (2.6), (2.7) and (2.8) that 

/4h3 (w" Mx = - 3 g -  * 3w"). (2.9) 

In order to express N o in terms of w in (2.5), it is necessary to eliminate Nx.  Since Ox refers 
to current area, the condition of axial equilibrium can be written 

( a  - w) ( - eh  + Nx) : -Pha 

which, when linearized, becomes 

Nx = - e h  (w/a). (2.10) 

Then substitution for N x from (2.10), and for e0 from (2.8), introduces into (2.5) two terms in 

w/a, one of order H and one of order P. Even though H is an order of magnitude smaller than 
Young's modulus for common ductile metals, the stress P would still be at least an order of 
magnitude smaller than H, so the term in P coming from (2.10) is neglected. Equation (2.5) is 

rewritten as 

- H h  w 3 1" = ~No + ~No. (2.11) 
a 

It is of some interest to note that, if w, Mx, No ~ e t, and H is identified with Young's modulus 
E, then (2.9), (2.11) become formally the same as the corresponding equations for an elastic 

shell with Poisson's ratio of one-half. 
Equations (2.9) and (2.1 I) can now be combined with the equation of radial equilibrium [9] 

M';c - Phw" + 1 No = 0 ( 2 . 1 2 )  
a 
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to obtain a single partial differential equation for w. The hardening modulus H depends on time 
since H is a function of P. However, H is treated as constant in time by putting H(P) = H(Po), 
implying that the actual stress-strain curve is approximated by the tangent through the point 
Po. Equation (2.9) can be integrated with respect to time to obtain Mx. An arbitrary function 
~fx must then be included in the expression for Mx. 

Dimensionless quantities/3, if, ~ are introduced now by putting 

/32 = 6a/h, ~b = 3Poa/(2Hh), ~ = ~x/a. (2.13) 

Then, with W(~, t) = w(x, t), and taking account of the time dependence of P in (2.12), the 
following equation is obtained from (2.9), (2.11)and (2.12): 

((~ + 6I~ + 9W) ' '  + 4~et(I~ + 4W)" + 41~ = Q(~) (2.14) 

where primes now denote differentiation with respect to ~, and Q(~) depends on the values of 
M x and w at t = 0. Q(~) can be evaluated directly in terms of I¢ by putting t = 0 on the left side 
of (2.14). Equation (2.14) is inhomogeneous if either IV(G, 0), W(~, 0) or l~(~, 0) 4: 0, and these 
three functions of ~ can be specified arbitrarily as initial conditions on (2.14). 

4. General solution for 1¢ 

A general solution of (2.14) is now constructed by means of the infinite series 

W(~,t) = ~ e nt Wn(~,t ) (3.1) 
n = O  

and convergence of the series established. Substitution of this series in (2.14), and the equating 
of coefficients of ¢~ t, yield an infinite system of partial differential equations with constant 
coefficients. For n = 0, 

[1~o + 61~o + 9IV0l'' + 4I~0 = Q(~), (3.2) 

and for n/> 1, 

[1~, +2(n + 3)l~n +(n + 3)2 Wn]"" + 4[1~,~ +nWn] 

= - 44 [( fn-  1 + (n + 3)Wn_ 1]"" (3.3) 

An initial imperfection or disturbance that is even in ~ will be considered. I¢ and W n will then 
be even in ~, and hence expressible as Fourier cosine integrals. With A(~, t) denoting the 
Fourier cosine transform [11] of W(~, t), An(o; t) the transform of Ign( ~, t), and R(a) the 
transform of Q(~), the series (3.1)becomes 
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gn ( a , t )  = r +.___~3 e _ ( n _ r ) t  _ s + 3 e _ ( n _ s ) t  (3.11) 
r - s  r - s  

-j 

where 

It  is easily shown, using (3.7), that 

O < g n ( o ~ t ) ~ g n ( a , O ) = l ,  0 < ~ <  °°, 0 < t <  °°. (3.12) 
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A(a, t )  = ~ e nt An(~ , t )  (3.4) 
n=O 

and (3.2), (3.3) become respectively 

Ao + (6 + 4/a4)eio + 9Ao = R/a  4, n =0, (3.5) 

A'n + [2(n + 3) + a/or 4 ~ n  + [(n + 3) 2 + 4n/a" ]A n 

=(4¢/a~)[/1._~ +(n + 3 ) A n - l ] ,  n ~  l .  (3.6) 

Homogeneous solutions for A n have the form 

A n =G n e - ( n - r ) t  +Kne  - (n - s ) t ,  n ~ O  

where Gn, Kn are suitable arbitrary functions of a, and 

= ~ [1 g (1 + 3a4)~] 2 = - (3 + 2/a 4) _+ (2/cz 4) (1 + 3a4) r.  (3.7) 

For c~ << 1, 

- 9  a4 _~ °~ 8 - 4  9 a4 (3.8) r = -~-- + + . . . .  s=  ~ - ~ - - 6 + ~  + . . .  

Hence r has a zero of order 4 at the origin o~ = 0, and s has a pole of order 4; r < 0 while s < 0, 

for all real a. Both r, s have monotonic derivatives, and r, s ~ - 3  as a ~ ~.  
The complete solution for A(ot, t) must contain three arbitrary functions to satisfy the initial 

conditions on I¢(~, t). It is convenient to assign these functions to Ao(a, t )and  put 

A o (~, t) = Go (a)e rt + Ko (~) e st + R o (o0 (3.9) 

where Go, Ko, Ro are arbitrary. The solutions of (3.6) forA n are written as recursion relations 

in the form of convolution integrals, 

• f t  A n - l ( ~ , r ) g n ( a , t  - r )dr ,  n ~ 1 (3.10) 
g o  
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From (3.10), it follows that 

An(a,O) = O, n >l 1 and ~ln(a,O) = O, 

while the initial value of ,zi 1 is given by 

.zil (a,0) = (4~/a 2) Ao(a,O).  

289 

n > 2  (3.13) 

(3.14) 

The functions Go, Ko, Ro can now be found in terms of A(a ,  0), A(a, 0), )l'(a, 0). From the 
Fourier cosine transform of (2.14) and (3.5), Ro is determined as 

9Ro = A'(a,O) + (6 + 4/~ 4 - 4~/a 2 ) A" (u,0) + (9 - 16filet 2) A (a,0). (3.15) 

Also, from (3.4), noting (3.13) and (3.14), 

A (a,0) = A o (a,O), (3.16) 

~/(a,0) = A'o (a,0) + (44/a 2)A o (a,0). (3.17) 

When Ao, A'o are expressed in terms of Go, Ko, Ro, (3.16), (3.17) become two equations for 
determining Go, Ko. Then, substitution for Go, Ko back in (3.9) yields the result 

Ao(~ , t )  = A(u,0) [T1 - (4~/~)T2] + A'(~,0)T2 +Ro[1 - T1] (3.18) 

where 

T1 = (re st - sert)/(r - s), 

T2 = (ert - eSt)/(r - s). 

For real a, e st goes strongly to zero as a ~ 0, and T2, (1 - Tl ) behave approximately as 

T2 =a4/4 ,  1 - T1 =(9 /4)a4 t ,  a-+O. 

Thus T2 has a zero of order 4 which cancels the pole of order 2 appearing in its coefficient in 
the first term on the right side of (3.18); (1 -T~  )also has a zero of order 4 which cancels the 
poles in Ro which appear on the right side of (3.15). Hence Ao(a, t) is bounded for real a 
provided A(a ,  0), A(a, 0), .4(a, 0) are. 

The convergence of the series representation for W(~, t), (3.1), is now demonstrated by 
showing that the sum 

e n t fo  ~ I A n (a, t) I da  
r t = l  

converges. From (3.10), (312) it follows that 
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44 f o  gn (~, t . -  r ) d r  I An(a,t)  [ < - ~  I A n - 1  Imax (3.19) 

where I A n -  1 [max refers to the maximum of the absolute value of A n_ 1 (a,r) for 0 ~< a < 0% 
0 < r <~ t. Then, writing In, n 1> 1, for the integral in (3.19), 

r + 3 [1 -- e -(n-r)t]  s + 3 [1 -- e -(n-s)t] (3.20) 
In - (r - s) (n - r) (r - s) (n - s) 

~< r +  3 s +3 (n + 3)c~ 4 
( r - s ) ( n - r )  ( r - s ) ( n - s )  4 n + ( n + 3 ) a  4 ' 

Then (3.19) can be rewritten 

[An(o~t) l<  4ff(n+3)c~2 [An-1  Imax. (3.21) 
4n + (n + 3) 2 a 4 

The coefficient of[ A n -  1 [max has a single maximum when a 2 = 2n~/(n + 3), and this maximum 
value is ~/n~. Hence the inequalities can be formed: 

[An(a,t) l <~-rr'F' IAn -1  [max ~ ~........~ IAo Imax- (3.22) 
n ~ (n!)~- 

Then, from (3.21), using (3.22), 

I An(a,t) I ~ 4~(n + 3)~2 ~n-1  
4n + (n + 3)2~ 4 [(n - 1)! ~- I Ao Imax. (3.23) 

The right side of (3.23)has simple poles where a -- (+_l+_i)nk/(n + 3)~-. The residue theorem yields 

fo ° l r f fn  I Ao Imax IAn(a't) lda< n~(n + 3)~ ' [ (n  - 1 ) ! ] ~  

~r~ n (3.24) 
"( (n!)~- [Ao Imax, n ~ 1 

and hence 

fO ° 
e nt IAn(a,t)  l d a < T r l A o  Imax ~ (~et)n (3.25) 

n=l n--1 (n!)~ 

the infinite series on the fight converging for all ff and t. W is then obtained as the inverse 
transform of (3.4). 
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4. Asymptotic solution for large time for a local axisymmetric initial imperfection 

As a preliminary step to obtaining a solution for arbitrary time, it is useful to establish the 

asymptotic form of the solution of (2.14) as t -~ oo for a particular set of initial conditions. As 

an initial imperfection or disturbance, it is convenient to choose W(~, 0), I~(~, 0), or I~(~, 0) 
proportional to exp ( -b~ 2). For an imperfection or disturbance localized to the neighborhood 

of  the origin, b is large. Three sets of initial conditions can be applied to (2.14); 

Case 1. W(~,0) = e - b ~ :  , l~(~,0) = l~(~,0) = 0; 

Case 2. I~(~,0) = e -b~ :  , W(~,0) = W(~,0) = 0; 

Case 3. I~(~,0) = e -b  ~ ' ,  W(~,0) = I~(~,0) = 0. 

Since the three cases can be treated by the same method, and lead to similar results, only Case 1 
describing an initial geometric imperfection will be considered in detail. For this case, (3.18) 

reduces to 

Ao(a , t )  = A(a,O) [(1 - 16~0/9a 2) - (4~/~2)T2 + (16~/9a  2)T1 ] (4.1) 

where 

A(~,0) = (2b)% -~2/4b. 

It is convenient first to obtain Wo"(~, t), which is the inverse transform of -a2Ao(a ,  t), and 

then proceed to determine W0(~, t). Application of the inverse Fourier cosine transformation to 
(4.1) yields 

W'o (~,t) = W"(~,0) + (16~/9)  W (~,0) - (16~/9)I1 + 4~012 (4.2) 

where 

11 = (rrb)-~ e -a2 /4b  T1 (o~t) cos ~ada, 

I2 = (Trb)-~ e -~2/4b  T2(a, t )  cos ~ada. 

Since (r - s) i> 0 for 0 ~< a < oo, T1 and T2 are written, for t -+ oo, 

ert 
T1 - [re - ( r - s ) t  - s] "" - - ser t ,  

r - - S  r - - s  

ert err 
T 2 = ~  [ 1 - e  - { r - O * ] ~ ~  . 

r - - s  r - - s  
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The exponential ert has a supremum at a = 0. For t -+ 0% the values of the integrands near the 

origin then dominate I~ and I~, so e "~" lab and cos ~a are replaced by l ,  and r, s are replaced by 
the first terms of their power series expansions about a = 0. Hence 

;: Orb)~I1 ~ e(-9tl4)a4da = -~ tr ' 

(Trb)~_i2 ... 1 f.oo a 4 e ( _ 9 t / 4 ) ~ , d a  = ~6 ( 4 )  ~ r '(5/4) 
4- .,o t r 

Therefore I~, I2 --> 0 as t ~ oo. Writing 1¢0(~, oo) for the asymptotic value of W0(~, t) as t -> 0% 
(4.2) becomes 

Wo(~, °°) = W"(~,0) + (16ff/9) 1¢ (~,0). 

Integrating twice with respect to ~ yields 

Wo(~, °~) = W(~,0) + (16ff/9) :0  ~ (~ - r/) W (r/,0)dr/+ C1~ + Co 

where Ct, C2 are arbitrary constant. The integral appearing on the right side can be evaluated, 
as b ~ oo, by Laplace's method [12], yielding 

fo  - 7) w -- fo  - ~)e-bnadrl  = ~(Tr/4b)~-. 

The condition that W = 0 as ~ -* ~ requires that C1 = - (8~b/9) (n/b)} ,  Co = O. Hence 

Wo(~, ~o) = w(~,0). 

Then, since 14:o (~,0) = W(~,0), from (3.16), it follows that 

w0 (~,0) = w0 (~,oo) = w(~,0) 

so the time dependence of Wo(~, t) appears to be negligible. It is concluded then that Ao(a, t) = 

Ao (a, 0), at least for an initial imperfection localized to the neighborhood of the origin. 
The recursion relation (3.10) yields the asymptotic relation, as t ~oo, 

An ,~ 4~b(n + 3)a  2 A n -  I 
4n + (n + 3)2a 4 

and A n can be expressed in terms of  Ao by 

An =f.(~)Ao 

where 
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n 4(m + 3)a  2 
fn(a ) = ~n II  (4.3) 

m=l 4m + (m + 3)2o~ 4 

The locations of  the poles offn(a ), which occur where 

I 1 

a=(+_l+_i)mX/(m+3)~, r n = l , 2 , 3  . . . .  n 

are independent of the axial load and hardening modulus, and depend only on the geometric 

quantities a and h. 
The inverse transform of fn(a) is denoted by Fn(~ ). Application of the residue theorem to 

the inversion integral yields, for ~ >/O, 

Fn(~ ) = - 7r}(2ff) n Z (4.4) p=l ( p + 3 ) }  Pnpe-kP~sin kp~+ (2n-3)n4  

where 

Pnp = fi (m + 3) (t9 + 3) kp = p~/(p + 3)}. 
m = 1 m ( p  + 3) 2 -- p(m + 3) 2 ' 
m ¢ p  

The convolution theorem for the Fourier cosine transform then gives lCn(~, oo) as the integral 

Wn(~,~) = ½ fo ~ e -bn= [F,(I ~ - n I) +F , (~  + n)ldn. (4.5) 

As b --> ~,  Laplace's method yields 

1 

Wn (~,~) ~ (rr/4b)~F n (~) (4.6) 

where Fn(~) is given by (4.4). 

5. General so lut ion  for a local ax isymmetr ic  initial imperfect ion  

An asympototic solution for b -> oo, valid for arbitrary time and holding uniformly in the limits 
t -~ 0 and t -+ oo is now constructed. In view of (3.7), the functions T1 (a, t), 7"2 (a, t) which 
appear in the general expression for A 0 (a, t), (3.18), can be written 

T1 = e-(3+~)t[cosh 7t + (3 + 3) (sinh 7t)/7], 

T2 = c-(3+~)t(sinh 70 /% 

where 

3 = 2/c~4, 3' = 2(1 + 30~4)}/~ 4. (5.1) 
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Since T~ and T2 are even functions in 7, they are single-valued and analytic over the entire 
plane, except at the origin a = 0 where there is an essential singularity characterized by e -4 t/s'. 
T~ and 7'2 are expressible as Laurent's series in powers of I /a  4 , convergent for I~1 > 0, which 
begin 

1 1 T1 =e-3t[ (1  + 3 t ) + 6 t  3 -~ + ( . . . )  ~ + . . . 1 ,  

7"2 = e - 3 t [ t -  2t2(1 - t) + ( . . . )  ~ + . . .  ]. 

Then A o (a,t), as given by (4.1), can be written 

Ao(a,t) = (2b)-~e-~'/4bLo(a,t) (5.2) 

where Lo represents the Laurent's series 

16ff 3t)  1 1 ^--3t  1 -~ te  -~ -~ . . .  L0(a,t)= 1 - ~ (1 - e  -at  s _ +8~t2(1 +~t)e + (5.3) 

which converges for 1~1 > 0. With the substitution a = b~', the inversion integral for Wo(~,t) 

becomes 

f5 Wo(~,t) = (21r)-~b ei~bfAo(bf, t)df. (5.4) 

Since the Laurent's series L0 appearing in Ao does not converge when ~" = 0, the path of 
integration along the real axis in (5.4) is indented at the origin by means of a semi-circle C of 

radius 6 in the upper half-plane. As the semi-circle C is traversed in the clockwise direction, ~" = 
-6e -ie, with ~ increasing from zero to rr. Hence, along C, 

[e b(-~2/4+i~) [ <eb~'/4e -~b~ sin~, 0 <4~<1r. 

The integrand in (5.4) can be made to go exponentially to zero along C as 6 ~ 0 by requiring 
that b6 ~ oo and b32 ~ 0. Putting 6 = b -2/3 and letting b ~ ,,o satisfies both these requirements. 

Also, when b6 -+ oo, Lo -+ I. Hence the integral around the semi-circle Cvanishes in the limit as 
b ~ oo, and the path of integration along the real axis can be deformed into any path lying in 
the upper half-plane, along which the order of summation and integration can be interchanged 
on the fight side of (5.4) since L0 converges everywhere along the path. 

The method of steepest descents [12] is now applied in the term-by-term integration of the 
right side of (5.4). Substitution from (5.2) and (5.3) in (5.4) leads to a series beginning 

l (b )~ t / eb( -~2 /4+i~)d~  +cP(t)b-2f~-2eb(-~2/4+i~)d~+ "t  
Wo (~, t )  = 5 "" 

(5.5) 
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where ¢(t) is the coefficient of 1/a 2 on the right side of (5.3). The exponential functions in the 
integrands on the fight side of (5.5) all have the same saddle-point, ~" = 2~i, and paths of 
steepest descent which are straight lines parallel to the real axis through the saddle point. The 

asymptotic expression for Wo(~, t) as b ~ ~o begins 

{ ~ -  3te-at) l } Wo(~,t)..~e -b~; 1 + (1 - e  -3t - ~  b - ~  + . . . .  

When just the leading term is retained, the result of Sect. 4 is recovered, namely that 

Wo (~ t) = W(~,0) 

since the leading term is independent of time. 
Just the leading term in Lo is retained now in Ao in determining A~ by means of the 

recursion relation (3.10), the result being 

1 2 
A ~ (a, t) = 4ff (2b)- ~'a -2 e-~/4 ~I1 (a, t) (5.6) 

where 11 is given by (3.20). Then, using (3.7), 11 becomes 

I 1 - -  
1 +4c~ 4 

t l - e-(a+~)t[cosh 7t + (sinh 7t)/27] t , 

where /3, 7 are defined by (5.1). Since 11 is an even function in 7, it is single-valued over the 
entire c~ plane. The expression in the curly brackets in analytic everywhere except the origin, 
where there is an essential singularity, while the coefficient a4/(1 + 4a 4) has simple poles where 
a = (+-1+0/2. The expression in the curly brackets has the Laurent's series expansion, conver- 
gent for [c~[ > O, 

1 
L t (o~t) = (1 - e -4t) + (t - 6t2)e -4t --~ + "'" (5.7) 

and hence (5.6) can be written 

A l ( ~ , t )  = ' (2b)- ~-fl (a)e -~ /4bL 1 (~,t) (5.8) 

where f l  (~) is defined by (4.3). 
Wt (~, t) can now be obtained easily from the right side of (5.8) by means of the convolution 

theorem. The method used in obtaining the inverse transform ofAo (a, t) can be applied to the 
expression (2b) e L 1 (e~,t). f l  (a) has not been included in L 1, since then L1 would not 
converge for arbitrarily small a. However, the inverse transform of fl  (~) has already been 
obtained; it is F1 (~), given by (4.4). Since just the leading term in Lo was retained, only the 
leading term in L 1 can now be retained, and the convolution theorem gives 

½(1 - e -4t) r~jo e-bn: [FI(I ~ - n [) + F, (~ + n)ldn. (5.9) W1 (~,t) 
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The leading term in the asymptotic expansion for I4' 1 (~, t) as b -~ oo is then obtained from (5.9) 
by Laplace's method. Hence, noting (4.6), 

W, (~,t) ~ (rr/4b)~F l (~) (1 - e -4t )  = W, (~,oo) (1 - e-4t) .  (5.1o) 

Since the leading term in L~ is time-dependent, the procedure in obtaining A2 from A1 
differs somewhat from the determination of A~ from Ao. When just the leading term inL~ is 
retained in (5.7), substitution from (5.7) and (5.8)in the recursion relation (3.10)and integra- 
tion yield 

A 2 (a, t) = (4~0/-2 ) (2b)-~f, (0~)e-a2/4 b [12 (0/, t) + J2 (0/, t)] (5.11) 

where 

/ 2  ( a , t )  - - -  

J2 (a,t) = 

50/4 [ / 
- e-' +  tlcosh +  (sinh 

8 + 250/4 t l 

e -4t  - e-(S+~)t[cosh 7t  + 5/3(sinh 70/7] 
o:4 _ 8 

and/3, 3' are again defined by (5.1). The expressions in the curly brackets are expressible as 
Laurent's series in powers of 1/0/4 which are convergent for [0/[ > 0.12 and J2 can be written 

{ 1 t 5014 l _ e - S t + (  ) - ~  + 
12 (a,t) - 8 + 2 5 0 / 4  . . . . . . .  

- - o :  4 { e - 4 t _ e - S t  
J2 (a, t) - 0/4 _ 8 + ( . . . )  ~ + . . . .  

(5.12) 

Just the leading terms in the Laurent's series in the expressions for 12 and J2, (5.12), contribute 
to the leading term in the asymptotic expansion of W2 (~, t) for large b. Hence, for b ~ 0% 

A2(o~t ) "" (2b)-½e-a2/4b[f2(0/) (1 -- e - s t )  440/2 
0/4 _ 8 

f ,  (0/) (e -4 t  - e-St)] .  (5 .13)  

The inverse transform off2 (a) is F2 (~), defined by (4.4). The second term in the square bracket 
in (5.13) has simple poles on the real axis, where 0/= +2 3/4, which arise as a result of truncating 
the Laurent's series in the expression for J2, (5.12). The exact expression for J2, (5.11), has an 
essential singularity at the origin as its only singularity. The inverse transform of 4~0/2f~ (0/)/(0/4 
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- 8) is denoted by K2(~), and is obtained as the Cauchy principal value of the inversion 
integral. Hence 

8x/-Y ~2 
g2(~ ) = ~ { - 2  ~ exp(-23/4~)  + exp( -~ /2 )  sin(~/2 + 1r/4)}. 

The convolution theorem for the Fourier cosine transform and Laplace's method then yield, for 

~>0, 

W 2 (~, t) ~ (Tr/4b)- ~ IF 2 (~) ( 1 - e - 5 t) _ K2 (~) (e-4t  _ e-  s t )]. (5.14) 

Numerical calculation shows that 

I F2(~)[  ~<[F2(0)  [ ~ 0 . 4 6 ~  2, 

I K2(~) I ~< IK~(0)  I ~ 0.21 ~b 2. 

Also, 

(e -4t  - e -S t )  <~ 0.2(1 - e-St).  

The upper bound on the term in K2 is less than 10 percent of  the corresponding upper bound 

on the term in F2 ; also, K2 dies out more rapidly for increasing ~ than F2,  and this term dies out 
with increasing time. Therefore, with small error, 

W2(~,t) "~ (Tr/4b)-~F2(~) (1 - e - s t )  = W2 (~,oo) (1 - e-St) .  

Determination of the remaining A n for n 1> 3 can be carried out following the same 
procedure as used fo rAy ,  and leads to the general result 

Wn(~,t) "~ (Tr/4b)~Fn(~)[1 - e - ( n + 3 ) t l =  Wn(~,oo)[1 - e -  (n+3)t], n >~ t. (5.15) 

Apart from the common factor (n/4b)~, the functions Fn(~) in the approximate formula for 

Wn(~, t) are upper bounds on Wn(~, t) which are approached asymptotically as t -+ o% while the 
approach is uniform over ~. The extent of  the plastic buckling deformation is thus governed by 

the functions Fn(~) and, in view of (4.4), by the factors exp(-kp~) .  The first few values of kp 
are given in Table 1. 

TABLE 1 

p 1 2 3 4 5 6 7 8 9 10 

kp 0.50 0.53 0.54 0.53 0.53 0.52 0.51 0.51 0.50 0.49 
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Thus k v rises to a maximum when p = 3, then slowly diminishes to zero as p increases. For n ~< 

9, the terms I¢ n die out in ~ at least as fast as exp(-kl~),  so these first few terms describe 
deformation localized to the neighborhood of the origin. For n ~ ~, W n describe deformation 

that spreads farther and father from the origin. However, from (3.24), it follows that the terms 

W n diminish faster than (n!)-~. For n t> 10, (n!)-} < 10 -3, so terms beyond the first few 

which describe a localized deformation are insignificant. Typically, ff would be of order one or 

less. 

6. Comparison with experiment 

A number of specimens were made from a structural aluminum alloy, 6061-T6. A stress-strain 

curve for this material is shown in [5], and has the feature of a rather sharply defined yield 

point with an essentially constant tangent modulus beyond the yield point. The specimens were 

100 mm long, with heavy flanges at both ends. The specimens had an original middle-surface 

radius a = 20 mm and thickness h = 2.5 mm. Various artificial imperfections were tried. It was 

found that, while the analysis tolerates the limiting process of letting b ~ oo, the experiments 
1 

did not. The extent of the imperfection in the x direction must be of order (ah) • . More 
localized imperfections on the order of the thickness h were ineffective. In cases when a buckle 

did not form at the location of the artificial imperfection, it formed adjacent to a flange, 

constraint at the boundary then being the dominant effect in initiating buckling. 

An artificial imperfection which yielded reproducible results consisted of a slight gradual 

thinning of the shell made by cutting a shallow circumferential groove about 10 mm wide and 

0.1 mm deep at its deepest point. These imperfections were so slight that they were virtually 

imperceptible to the unaided senses of sight and touch. Outward buckling occurred regardless 

of whether the groove was on the inside or outside. The thinning of the shell likely produced a 

local outward perturbation in the prebuckling deformation. There would be a local increase in 

the axial compressive strain - e  x which in turn would be related to the radial displacement w by 

-w /a= eo = -ex/2.  

Buckles initiated by thinning had the same shape and extent as those which formed adjacent to 

a flange, so the slight variation in h due to the thinning is not considered to affect buckling 

once it is underway. In all cases, whether the buckle formed at the site of the imperfection or 

adjacent to a flange, it consisted of a single outward axisymmetric bulge, Fig. 1. 

The functions F n, which describe the radial displacement field, have been calculated for n = 1 

to 4 using formula (4.4) and the numerical data: a = 20 mm, h --- 2.5 mm and ~ = 1. A more 
accurate value of qJ for these specimens would be ~k --- 0.8 but, since the result sought does not 
depend strongly on ~b, the value ~ = 1 was used for convenience. The functions F~ to/?4 are 

shown plotted in Fig. 2. The horizontal scale for ~ has been carefully matched to the scale of 

the specimen cross-section traced from a photographic enlargement, and shown at the bottom 
of Fig. 2. No attempt has been made to relate the vertical scale to the actual radial displacement 
of the specimen. The decay of the functions Fn with increasing ~ roughly agrees with that of 
the deformation of the specimen. However, the observed deformation is strictly outwards and 
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Fig. 2. Plot of functions Fn(~ ) versus the dimensionless coordinate ~. The outline of the cross-section of a 
buckled specimen is shown at the bottom to the same horizontal scale. 

does not show the waviness exhibited by the graphs of the functions F1 . . . .  F4 in Fig. 2. This 

discrepancy is thought to be due to neglecting in the analysis, not the elastic strains, but the 

effect of transverse shear on the deformation. 

7. Discussion 

The rigid-plastic idealization of  material behavior used in conjunction with perturbation analy- 

sis here and in other cases [3, 4, 5, 8] provides a good description of  plastic buckling deforma- 

tion observed in experiments, especially the localized deformation resulting from edge con- 

straint or initial imperfections. Although neglecting elastic strains precludes determining the 

buckling load as an eigenvalue, the present approach does permit calculation of  the increase in 

deflection accompanying a given increase in the applied load. Since it has long been recognized 

that bifurcation analysis based on simple J2 flow theory yields predictions on the buckling load 

that are too high, rigid-plastic perturbation analysis could be a useful alternative in practical 

situations of plastic buckling. 
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